

## Expressions \& Formulae

1. Given that $a=8, b=12$ and $c=4$, calculate the value of:
(a) $a-2 c$
(b) $c(b-a)$
(c) $\frac{2 a+b}{c}$
(d) $a+\frac{b}{c}$
(e) $a^{2}+c^{2}$
(f) $\quad(2 c)^{2}$
2. A formula is defined as $E=5 p+q^{2}$.
(a) Calculate the value of $E$ when $p=2$ and $q=3$.
(b) Calculate the value of $E$ when $p=4$ and $q=2$.
(c) Calculate the value of $E$ when $p=5$ and $q=8$.
3. (a) What is the value of $x^{2}+3 x-5$ when $x=4$ ?
(b) What is the value of $x^{2}-2 x+7$ when $x=3$ ?
(c) What is the value of $2 x^{2}+x-1$ when $x=2$ ?
4. Express each of the fractions below in their simplest form given that $a=7$ and $b=3$.
(a) $\frac{a-b}{a+b}$
(b) $\frac{a+b}{2 a+2 b}$
(c) $\frac{3 b-a}{4 b}$
(d) $\frac{4 b-a}{4 a-b}$
** You need a calculator for questions 5 and 6.

5. A formula is defined as $P=d^{2}-\frac{e}{17}$.

Calculate, giving your answers correct to 3 significant figures, the value of $P$ when:
(a) $d=13$ and $e=130$
(b) $d=11$ and $e=64$
(c) $d=21$ and $e=200$
(d) $d=4$ and $e=60$
(e) $d=3$ and $e=32$
(f) $\quad d=21 \cdot 5$ and $e=5950$
6. Given that $h=15$ and $g=23$, calculate, correct to 2 significant figures, the values of:
(a) $\frac{h+g}{h}$
(b) $\frac{h^{2}}{g}$
(c) $\quad g(2 h+g)$
(d) $\sqrt{\frac{h^{2}+g^{2}}{30}}$

1. Write each of the following numbers in scientific notation.
(a) 1200
(b) 4125000
(c) 225
(d) 67000
(e) 9
(f) 41000000
(g) 92
(h) 240000000000
2. For each of the following numbers i) write it out in figures ; ii) write it in scientific notation.
(a) 5 million
(b) 32 thousand
(c) $52 \cdot 1$ million
(d) 243 thousand
3. Write each of the following numbers in scientific notation.
(a) $0 \cdot 057$
(b) 0.0021
(c) 0.84
(d) $0 \cdot 00000000915$
(e) $0 \cdot 0007$
(f) $0 \cdot 08004$
(g) $0 \cdot 0000012$
(h) $0 \cdot 6$
4. Write each of the following numbers out in full.
(a) $1.6 \times 10^{5}$
(b) $2.78 \times 10^{3}$
(c) $1.22 \times 10^{8}$
(d) $4 \times 10^{4}$
(e) $2.003 \times 10^{2}$
(f) $5.7 \times 10^{0}$
(g) $6 \times 10^{-3}$
(h) $4.52 \times 10^{-6}$
(i) $1.003 \times 10^{-4}$
(j) $7 \cdot 2 \times 10^{-5}$
(k) $23 \times 10^{-2}$
(l) $6 \cdot 0004 \times 10^{-3}$
5. Calculate each of the following expressing your answer in standard form:
(a) $\left(2 \times 10^{3}\right) \times\left(3 \times 10^{5}\right)$
(b) $\left(4 \times 10^{4}\right) \times\left(2 \times 10^{-6}\right)$
(c) $\left(5 \times 10^{2}\right) \times\left(3 \times 10^{4}\right)$
(d) $\left(9 \times 10^{7}\right) \div\left(1.5 \times 10^{2}\right)$
(e) $\left(3.6 \times 10^{2}\right) \div\left(0.2 \times 10^{5}\right)$
(f) $\left(24 \times 10^{4}\right) \div\left(48 \times 10^{-3}\right)$
(g) $\frac{1.28 \times 10^{6}}{0.4 \times 10^{2}}$
(h) $\frac{4 \cdot 17 \times 10^{2}}{3 \times 10^{-3}}$
(i) $\frac{18 \times 10^{-2}}{0.2 \times 10^{5}}$
6. Answer each of the following questions leaving your answers in standard form and correct to 3 s.f. where necessary.
(a) Light travels at $1.85 \times 10^{5}$ miles per second. How far will it travel in an hour?
(b) The radius of the earth is $6.45 \times 10^{6}$ metres. What is its circumference (in km )?
(c) If a heart beats 70 times a minute, how many times will it beat in a lifetime of 80 years?
(d) 100 grams of water contains 2000 drops. How many drops would there be in a tank containing 1 tonne of water?
(e) In 1 gram of carbon there are $6 \times 10^{26}$ atoms. How many carbon atoms are there in 5 kg of pure carbon?


## Similarity (1)

1. Each diagram below shows a pair of similar shapes or objects. For each pair $\qquad$
i) state the scale factor (from left to right) ii) calculate the length marked $x$.
(a)

(b)

(c)

(d)

2. Each pair of shapes below is mathematically similar.

Calculate the area of each right-hand shape.

(c)


3. Each pair of containers below is mathematically similar.
Calculate the volume of each right-hand container.
(a)



1. Calculate the length of the side marked $x$ in each diagram below.
(a)

(b)

2. In the diagram $\angle \mathrm{ABC}=\angle \mathrm{CED}, \mathrm{AB}=28 \mathrm{~cm}$, $\mathrm{AC}=24 \mathrm{~cm}$ and $\mathrm{ED}=21 \mathrm{~cm}$.
(a) Explain why the triangles ABC and CDE are similar.
(b) Calculate the length of CD.
(c) Given that the area of triangle ABC is 144 square centimetres, calculate the area of triangle CDE.

3. Calculate the length of the side marked $x$ in each diagram below.
(a)

(b)

4. The digram opposite shows an aluminium pipe frame. The cross members QS and PT are parallel. $\mathrm{RS}=48 \mathrm{~cm}, \mathrm{QS}=24 \mathrm{~cm}$ and $\mathrm{PT}=32 \mathrm{~cm}$ as shown.

Calculate the length of ST

5. In the diagram a ladder is laid against two walls as shown.

The higher wall is 1.6 metres high, and the lower wall is 0.7 metres. The distance between the two left hand faces of the walls is 0.9 metres.

Calculate the distance between the foot of the ladder and the lower wall.

## Speed, Distance and Time



1. The map shows several towns with the main roads joining them.

The numbers indicate the distances in kilometres between each pair of towns.
(a) How far is it from London to Cambridge if the journey takes 2 hours at an average speed of $48 \mathrm{~km} / \mathrm{h}$ ?
(b) A vintage car completed the London to Brighton run in 12 hours. What was its average speed?
(c) How long would it take a cyclist to travel from Oxford to Portsmouth if his average speed was $20 \mathrm{~km} / \mathrm{h}$ ?

(d) A van driver left London at 0950 to travel to Norwich via Cambridge. He arrived in Norwich at 1335. Calculate his average speed for the journey.
(e) A bus travelled from Oxford to Dover (via London) in 3hours 24 minutes.

If its average speed for the journey was $60 \mathrm{~km} / \mathrm{h}$, calculate the distance from Oxford to London.
2. The rail distance from Manchester to Glasgow is 357 km .

If a high speed train averages $140 \mathrm{~km} / \mathrm{h}$, find the time taken in hours and minutes.

3. A yacht leaves Largs and sails a distance of 74 km .

If the yacht averages a speed of $14 \mathrm{~km} / \mathrm{h}$, calculate the time taken for the journey correct to the nearest minute.

4. A car leaves Dumfries at 1.25 pm and reaches Edinburgh at 2.53 pm .
(a) How long did the journey take?
(b) If the distance travelled was 84 miles, calculate the average speed of the car correct to the nearest mile per hour.

5. Mr Munro drove his car from Edinburgh to York and back.

The record of his journey is shown in the graph.
(a) He rested on his way to York. For how long did he rest?
(b) Calculate his average speed from York back to Edinburgh.
(c) Calculate his average speed for the whole journey (do not include the stops). Give your answer correct to 1 d.p.


1. Susan Marshall is paid an hourly rate of $£ 12.40$.

She works a basic 36 hour week.
In addition any overtime she works is paid at time-and-a-half.
Calculate her total pay for a week in which she works 42 hours.
2. Mike has a part time job as a sales assistant working Friday and Saturday of each week. He is paid $£ 6.60$ per hour between the hours of 9.00 am and 4.00 pm each day. Any work he does outside these hours is paid at 'double-time'. In addition he is paid 3\% commission on all the goods that he sells.
 Below is his job sheet for a particular week $\qquad$ ..


| Employee : M. Smith | Start Time | Finish Time | Sales total (£) |
| :--- | :--- | :--- | :---: |
| Friday | 9.00 am | 3.00 pm | $£ 860$ |
| Saturday | 9.00 am | 7.30 pm | $£ 1850$ |

Calculate his total pay for these two days.
3. (a) A man invests $£ 4500$ in a Building Society at an interest rate of $4 \%$ per annum.

How much will his investment be worth after 8 months?
(b) In a sale, a shop offers a $12 \%$ discount on a table and four chairs normally priced at $£ 1680$. How much would you pay for the table and chairs in the sale?
(c) V.A.T. is charged at a rate of $17 \frac{1}{2} \%$ on the cost of an article before tax.

If a CD player is advertised at $£ 74+$ VAT, calculate the total cost of the player.
(d) A woman buys a car for $£ 6700$ and sells it for $£ 4891$ a year later. Calculate her percentage loss.
4. A caravan costing $£ 8600$ may be paid for in any of the following ways:
i) By cash.
ii) By hire purchase with terms
deposit $-15 \%$ of cash price +36 monthly payments of $£ 240$.
iii) By a leasing agreement with terms


No deposit - 24 monthly instalments of $£ 300+$
fins1 novment nfenつ5
(a) Calculate the total cost of each method and and find how much is saved between the least and most expensive.
(b) Express this saving as a percentage of the cash price, correct to the nearest percent.
5. In January a man bought American dollars to the value of $£ 960$ when the exchange rate was 1.6 dollars to the pound. Before he went on his holiday in April he noticed that the exchange rate had become 1.65 dollars to the pound. How many more dollars would the man have received if he had waited until April to exchange his money?
6. After restoring a boat a man sold it for $£ 2511$ and made a $35 \%$ profit.

How much did he pay for the boat?
Saving and Spending (2)

1. The present reading on a householder's gas meter is 00976508 and the previous reading was 00930658 cubic feet.
(a) How many cubic feet have been used?
(b) If 1 therm $=100$ cubic feet, how many therms have been used?
(c) If gas is charged at 32 p per therm, and the customer must pay a standing charge of $£ 16.50$, what is the total cost of the gas consumed?
2. An extract from Mr Lewis's electricity bill is shown below.

(b) This bill worked out to be exactly $80 \%$ of his previous bill.

How much did he pay in his previous bill?
3. A man insured his house, valued at $£ 95000$, at the rate of 28 p per $£ 100$, and its contents, valued at $£ 24000$, at 38 p per $£ 100$.
Find the total annual premium he had to pay.
4. Gail Hendry has a annual income of $£ 22300$. Her allowances free of tax amount to $£ 5500$.

On her taxable income she has to pay tax at the rate of 22 p in the pound.
How much tax will she pay each month?
5. In a certain holiday brochure, advertisements were found for the following three campsites in France. The prices quoted are per person.

|  | JULY |  | AUGUST |  | SEPTEMBER |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 7 days | 14 days | 7 days | 14 days | 7 days | 14 days |
| Bon Anse | $£ 112$ | $£ 178$ | $£ 110$ | $£ 154$ | $£ 85$ | $£ 140$ |
| La Oisier | $£ 135$ | $£ 205$ | $£ 110$ | $£ 160$ | $£ 95$ | $£ 155$ |
| Bon Ami | $£ 115$ | $£ 190$ | $£ 100$ | $£ 150$ | $£ 90$ | $£ 135$ |

CAR FERRY - Portsmouth to Caen (return) $£ 350$ for a family of 4 : Portsmouth to St Malo (return) $£ 428$
A discount of $30 \%$ is given for all children under 12 years of age. A booking fee of $5 \%$ is added to each bill
Calculate the cost of a fourteen day holiday during August in the Le Oisier campsite for the Graham family, comprisng Mr and Mrs Graham, their daughter aged 16 years and their son aged 7 years, if they decide on the Portsmouth - St Malo crossing.

1. Calculate each of the following.
(a) 4-7
(b) $-3+8$
(c) $5+(-3)$
(d) $2+(-7)$
(e) $-3-6$
(f) $\quad-1-4$
(g) $-9+5$
(h) $\quad-2+(-5)$
(i) $2-(-4)$
(j) $\quad-6-(-3)$
(k) $\quad-2-(-4)$
(1) $-7-(-7)$
2. Simplify:
(a) $2 x-5 x$
(b) $-3 a+a$
(c) $7 x-4 x$
(d) $5 p+(-8 p)$
(e) $-2 e+7 e$
(f) $-d-3 d$
(g) $4 h+(-2 h)$
(h) $-9 a+(-a)$
(i) $4 k-(-2 k)$
(j) $-4 p-(-2 p)$
(k) $-m-m$
(l) $-5 y-(-8 y)$
3. Simplify:
(a) $-6 \times 5$
(b) $-2 \times(-7)$
(c) $3 \times(-4)$
(d) $-8 \times 2$
(e) $-a \times 5$
(f) $6 \times(-4 p)$
(g) $\quad-2 y \times 7$
(h) $\quad-3 d \times(-9 d)$
4. Solve each of the following equations.
(a) $3 x+8=2$
(b) $2 t+3=-7$
(c) $4 m+1=-3$
(d) $4 y-7=-3$
(e) $6 a-1=-13$
(f) $7 d-2=-2$
(g) $5 y=3 y-16$
(h) $3 a=20-2 a$
(i) $7 d=-2 d-18$
(j) $7 h+4=4 h-5$
(k) $12 p-6=8 p-2$
(l) $8 x+5=14-x$
(m) $2 p+3=p-4$
(n) $7 h-6=2 h-21$
(o) $5 x+9=8 x+33$
(p) $4 y-7=8 y-23$
(q) $7 k+2=4 k-25$
(r) $16 a-4=6 a-34$
5. Evaluate each of the following expressions when $a=2, b=-4$ and $c=-3$.
(a) $a+b$
(b) $a-b$
(c) $2 a+c$
(d) $a b$
(e) $b c$
(f) $\quad b-c$
(g) $a+2 c$
(h) $3 b+6 a$
(i) $2 c-2 b$
(j) $b^{2}$
(k) $3 c^{2}$
(l) $\quad(2 b)^{2}$
(m) $a^{2}-c^{2}$
(n) $7 a+3 c$
(o) $2 c-3 b$
(p) $(2 b-4 c)^{2}$
6. Evaluate each of the following expressions when $p=-2, q=4$ and $r=-6$.
(a) $\frac{q}{p}$
(b) $\frac{r}{p}$
(c) $\frac{3 q}{r}$
(d) $\frac{2 r}{q}$
(e) $\frac{2 q+r}{p}$
(f) $\frac{q-p}{r}$
(g) $\frac{2 p+2 r}{-q}$
(h) $\frac{r^{2}+q}{2 p}$

## Pythagoras (1)

You need a calculator for this worksheet.
Round your answers to one decimal place where necessary.

1. Calculate the length of the side marked $x$ in each triangle below
(a)

(b)




(f)

(g)

(h)

2. Consider the framework opposite.
(a) Calculate the length of BD .
(b) Hence calculate the length of BC.
(c) Calculate the area of triangle ABC .

3. A rhombus has sides of 20 cm and its longest diagonal measuring 34 cm .
(a) Calculate the length of the shorter diagonal.
(b) Calculate the area of the rhombus

4. Calculate the distance between each pair of points below.
(a) $\mathrm{A}(2,5), \mathrm{B}(7,10)$
(b) $\quad \mathrm{P}(1,8), \mathrm{Q}(12,2)$
(c) $\mathrm{E}(-2,3), \mathrm{F}(2,-4)$
(d) $\mathrm{R}(-7,-3), \mathrm{F}(3,-1)$

You need a calculator for this worksheet.
Round your answers to one decimal place where necessary.

1. Consider the cuboid opposite.
(a) Calculate the length of the face diagonal AC.
(b) Hence calculate the length of the space diagonal AG.

2. The pyramid opposite has a rectangular base.
(a) Calculate the length of the base diagonal PR.
(b) Given that edge $\mathrm{TR}=18 \mathrm{~cm}$, calculate the vertical height of the pyramid.

3. Which of the following triangles are right-angled?

(i)

(ii)

(iii)
4. Consider the diagram opposite. All lengths are centimetres.
(a) Calculate the length of AC.
(b) Calculate the length of ED.
(c) Prove that triangle ACD is right-angled at C .
(d) Hence calculate the length of BC and the area of triangle ABC correct to the nearest whole number.


## Pythagoras (3) - Problems

## You need a calculator for this worksheet.

Round your answers to one decimal place where necessary.


Begin questions 1 to 8 by drawing a clear and well labelled diagram. Let $\boldsymbol{x}$ be the length to be found.

1. A ship sails 9 km due North and then a further 17 km due East.

How far is the ship from its starting point?
2. An aircraft flies 400 km due West and then a further 150 km due South. How far is the aircraft from its starting point?
3. A ship sailed 8.42 km due East followed by 4.7 km due South. How far would it have sailed if it had followed a direct course?

4. A ship sails 9 km due North and then a further distance $x \mathrm{~km}$ due West. The ship is now 12 km from its starting point. Calculate $x$.
5. How long is the diagonal of a square of side 11 mm ?

6. A rectangle measures 14 cm by 9 cm . Calculate the length of its diagonals.
7. A ladder of length 5 metres leans against a vertical wall with the foot of the ladder 2 metres from the base of the wall. How high up the wall does the ladder reach?
8. A ladder is placed against a vertical wall. If the distance between the foot of the ladder and the wall is 1.8 metres, and the ladder reaches 4 metres up the wall, calculate the length of the ladder.
9. A circle has a diameter of 20 cm .

A chord is drawn which is 6 cm from the centre of the circle. Calculate the length of the chord.
10. A circle has a diameter of 12 cm .

A chord is drawn which is 5 cm from the centre of the circle. Calculate the length of the chord.

m
12. Calculate the length of the banister rail shown in the diagram if there are 6 stairs, and if each tread measures 25 cm and each riser 20 cm .

Give your answer in metres.


Brackets And Equations (1)

1. Expand each of the following:
a) $3(c+5)$
b) $\quad 2(w-4)$
c) $2(3 f+1)$
d) $3(t+8)$
e) $5(g-3)$
f) $7(w+x)$
g) $6(y-3)$
h) $7(p+2 q)$
i) $\quad 4(1+2 y)$
j) $8(p+9 k)$
k) $5(1+2 a)$
l) $\quad 4(7 f+2 g)$
m) $8(1+3 e)$
n) $5(2+3 w)$
o) $\quad h(h+2)$
p) $\quad a(a+5)$
q) $\quad c(c-5)$
r) $\quad e(e-2)$
s) $\quad f(1+4 f)$
t) $\quad 2 t(t+4)$
u) $\quad p(p+q)$
v) $\quad p(3 p+1)$
w) $5 a(h+a)$
x) $3 r(p-2 r)$
2. Expand:
a) $\quad-4(d+3)$
b) $\quad-2(x-3)$
c) $\quad-5(d+2)$
d) $\quad-3(a-4)$
e) $\quad-7 e(e+5)$
f) $\quad-9(x+9)$
g) $\quad-6 p(p-7)$
h) $\quad-8(k+7)$
i) $\quad-3 y(1-2 y) \quad j) \quad-7(1+6 h)$
k) $\quad-5 v(5-2 v)$
l) $\quad-4 p(1-8 p)$
3. Solve each of the following equations:
a) $3(x+2)=24$
b) $5(2 p-3)=15$
c) $4(2+x)=40$
d) $7(2 p-1)=21$
e) $2(3 m-1)=16$
f) $8(2 v-1)=24$
g) $\quad-3(x+5)=-27$
h) $-4(y-1)=-16$
i) $\quad-3(p+4)=6$
j) $\quad-(a+2)=-9$
k) $\quad-5(2 a-3)=5$
l) $-4(3 x-2)=-16$
m) $3(m+4)=11$
n) $2(7+y)=17$
o) $6(2 x-1)=-3$
p) $\quad-2(x+5)=3$
q) $\quad-3(2 p-1)=-4$
r) $-12(d-3)=-12$
4. Expand each of the following:
a) $3(a+b+2 c)$
b) $\quad 5\left(x^{2}-2 x+3\right)$
c) $a(a+b-c)$
d) $2 p(3 p-q+1)$
e) $\quad-3\left(y^{2}-2 y+5\right)$
f) $\quad-x\left(x^{2}+3 x-1\right)$

## Brackets And Equations (2)

1. Expand and simplify :
a) $3(2 a-1)+a$
b) $2(3 x+1)-2 x$
c) $5(b+1)-11$
d) $5(2 g-1)+3$
e) $3(3-4 y)+7 y$
f) $3(4 c+1)-6$
g) $4(3 h+1)-10 h$
h) $a(b+2)+2 a b$
i) $\quad 7(2-3 m)-8$
j) $6+2(4 y-3)$
k) $5 a+2(2 a-3)$
1) $7-2(2 p-3)$
m) $6+5(3 y-2)$
n) $7 b-3(2 b-3)$
o) $8-2(5 y-3)$
p) $2 x-3(2 x-5)$
q) $\quad 3 c+2(1-3 c)$
r) $\quad 9-2(6 g-1)$
2. Expand each of the following :
a) $\quad(x+1)(x+3)$
b) $(y+3)(y+1)$
c) $\quad(a+2)(a+5)$
d) $\quad(b+2)(b+4)$
e) $\quad(x+2)(x+6)$
f) $\quad(s+1)(s+6)$
g) $(y+5)(y+4)$
h) $\quad(b+6)(b+4)$
i) $(c+9)(c+8)$
j) $(x-3)(x-5)$
k) $\quad(b-2)(b-3)$
1) $(c-15)(c-3)$
m) $(a-4)(a-9)$
n) $(y-7)(y-8)$
o) $\quad(x-1)(x-1)$
p) $(s-7)(s-7)$
q) $(d-2)(d-12)$
r) $(b-11)(b-2)$
3. Expand each of the following :
a) $(x-2)(x+5)$
b) $\quad(a+3)(a-4)$
c) $\quad(t-6)(t+3)$
d) $(y+7)(y-4)$
e) $(c+2)(c-5)$
f) $\quad(x-5)(x+1)$
g) $\quad(b-3)(b+9)$
h) $(p-10)(p+1)$
j) $(z+2)(z-6)$
k) $\quad(x+1)(x-2)$
i) $(y-7)(y+6)$
m) $(c-5)(c+3)$
n). $\quad(p-7)(p+2)$
1) $\quad(a+1)(a-1)$
p) $(x-2)(x+5)$
q) $\quad(a+3)(a-6)$
o) $\quad(b+12)(b-6)$
s) $(y+1)(y-4)$
t) $(c+2)(c-8)$
v) $(b-1)(b+9)$
w) $(p-10)(p+3)$
r) $\quad(t-8)(t+3)$
u) $\quad(x-4)(x+7)$
x) $(y-1)(y+4)$
4. Expand each of the following :
a) $(3 x-3)(x-5)$
b) $\quad(a+1)(2 a+4)$
c) $\quad(t-5)(5 t-3)$
d) $(y-7)(2 y-2)$
e) $\quad(3 c+2)(c+7)$
f) $\quad(2 x+5)(x+2)$
g) $\quad(b-1)(3 b-8)$
h) $(5 p+11)(p+1)$
i) $(3 y-6)(3 y-6)$
j) $(4 z+2)(z-3)$
k) $\quad(2 x+1)(2 x-3)$
1) $(4 a+1)(3 a-1)$
m) $(c-4)(2 c+3)$
n). $(5 p-7)(p+4)$
o) $\quad(b+2)(7 b-6)$
p) $(3 x-2)(2 x+1)$
q) $\quad(a+1)(7 a+6)$
r) $(2 t-8)(3 t+1)$
s) $(y-1)(3 y-1)$
t) $\quad(3 c+2)(3 c-2)$
u) $(3 x-1)(3 x-7)$
v) $(2 b+1)(4 b+2)$
w) $(2 p-3)(p+3)$
x) $(2 y-1)(7 y+3)$
5. Expand :
a) $\quad(x+1)^{2} \mathrm{~b}$
$(w-3)^{2}$
c) $\quad(a-4)^{2}$
d) $\quad(c+6)^{2}$
e) $(y-8)^{2}$
f) $\quad(a+7)^{2}$
g) $\quad(b+2)^{2}$
h) $(k+9)^{2}$
i) $\quad(b-9)^{2}$
j) $\quad(x-10)^{2}$
k) $(c-1)^{2}$
1) $(y-5)^{2}$
m) $(p-10)^{2}$
n) $(c-12)^{2}$
o) $\quad(p-6)^{2}$
p) $\quad(x+4)^{2}$
q) $(2 g-1)^{2}$
r) $(5 y+3)^{2}$
s) $\quad(3 q+2)^{2}$
t) $(4 a-1)^{2}$
u) $(3 y-6)^{2}$
v) $(4 h+1)^{2}$
y) $\quad(2 d-8)^{2}$
z) $\quad(5 a+4)^{2}$
1. Expand, simplify and solve each of the following equations :
a) $5-3(x-2)=-1$
b) $2(3 x-1)+3=31$
c) $\quad 4(x+2)+3(x+4)=-1$
d) $5(x+5)-(2 x+1)=6$
e) $2(x+1)+3(x+4)+1=0$
f) $3(x+6)-2(x+9)=31$
g) $2-x-(3 x-2)=4$
h) $7(1-x)-2(4-3 x)=4$
i) $\quad 2(3-2 x)-5(3 x-4)=45$
j) $2(3-x)-3(5-2 x)=-17$
k) $2(4 x+1)-3(3 x-7)=23$
l) $3(5-x)-2(7-3 x)+8=0$
m) $\quad 4(2 x+1)-(x+2)=16$
n) $3(4-x)+5=19-x$
2. Expand and simplify each of the following expressions :
a) $\quad 3(x-4)+(x+2)^{2}$
b) $\quad(2 x-1)(x+3)+2 x(x-3)$
c) $(2 x+3)^{2}-4(x+1)$
d) $\quad-(x+2)^{2}+4 x$
e) $\quad-3(2 x-1)^{2}+12 x^{2}$
f) $(x-3)(x+1)-(x+4)^{2}$
g) $3 x(x-4)-(x+2)(x-4)$
h) $(x+2)^{2}+(2 x-1)^{2}-(x+3)$
i) $(2 x-3)^{2}-4(x-3)(2 x+1)$
j) $\quad 3 x(x+3)^{2}+2 x(x-3)$
k) $2 x\left(x^{2}-x+2\right)+(x-3)^{2}$
l) $(x-1)^{2}-x(x+1)^{2}$
3. Solve each of the following equations :
a) $x^{2}+7 x-2=x^{2}+5 x+8$
b) $10 x+x^{2}+9=x^{2}+7 x+30$
c) $(x+4)(x+2)=x^{2}+x+28$
d) $(x+1)^{2}=x(x-7)+19$
e) $\quad(2 x-1)^{2}-1=4(x+3)(x-1)$
f) $(x-7)(x-3)=(x+2)^{2}+3$
g) $3(x+5)(x-1)=3(x+6)^{2}-27$
h) $\quad(2 x+1)(x+1)=2(x-4)^{2}+7$
i) $\quad(3 x-1)(x+1)=3 x(x+1)+4$
j) $(2 x+1)^{2}-3 x(x+5)=(x+3)(x+6)+3$

## Brackets And Equations (4) - Applications

1. (a) For the rectangle opposite write down, in its simplest, an expression for:
i) its perimeter $(P)$;
ii) its area $(A)$.
(b) Calculate $P$ when $x=4 \mathrm{~cm}$.
$x+5$
$x+1 \square$
2. (a) For the rectangle opposite write down, in its simplest, an expression for:
$2 x+5$
i) its perimeter $(P)$;
ii) its area $(A)$.
(b) Calculate $A$ when $x=6 \mathrm{~cm}$.
3. Consider the triangle opposite.
(a) Write down an expression for $h^{2}$ in its simplest form.
(b) Hence calculate $h$ when $a=2$.

4. Consider the triangle opposite.
(a) Write down an expression for $h^{2}$ in its simplest form.
(b) Hence calculate $h$ when $a=7$.

5. For the triangle opposite, write down simplified expressions for:
(a) its area (A);
(b) the length of PQ.

6. For the rectangle opposite, write down simplified expressions for:
(a) $\quad P$, its perimeter.
(b) $A$, its area.
(c) The length, $d$, of its diagonal.
7. Repeat question 6. for rectangles measuring:
(a) $(x+5) \mathrm{cm}$ by $(2 x+2) \mathrm{cm}$
(b) $\quad(x+3) m m$ by $(3 x-1) m m$

## Statistics (1) - Measures of the Centre ( Mean, Median \& Mode)

1. For each set of numbers below, calculate :
i) the range;
ii) the mean.

| (a) | 5 | 7 | 3 | 8 | 8 | 5 | 3 | 9 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (b) | 23 | 53 | 21 | 34 | 87 | 64 |  |  |  |  |
| (c) | $1 \cdot 4$ | $4 \cdot 7$ | $7 \cdot 1$ | $12 \cdot 2$ | $4 \cdot 6$ | $13 \cdot 1$ | $20 \cdot 2$ | $11 \cdot 8$ | $5 \cdot 0$ |  |

2. For each set of numbers below, establish the median and state the mode:

| (a) | 2 | 3 | 3 | 3 | 4 | 4 | 5 | 7 | 7 | 8 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (b) | 32 | 45 | 33 | 17 | 22 | 54 | 45 |  |  |  |  |
| (c) | $6 \cdot 3$ | $1 \cdot 7$ | $8 \cdot 8$ | $1 \cdot 2$ | $8 \cdot 6$ | $4 \cdot 1$ | $10 \cdot 7$ | $6 \cdot 3$ | $6 \cdot 3$ |  |  |
| (d) | 8 | 12 | 56 | 24 | 36 | 12 | 24 | 24 |  |  |  |
| (e) | 11 | 11 | 7 | 12 | 16 | 17 |  |  |  |  |  |
| (f) | 23 | 26 | 38 | 65 | 43 | 75 | 75 | 62 | 86 | 22 |  |

3. For each set of numbers in Q2, calculate the mean value, rounding your answers to 1d.p.
4. (a) Calculate the mean of the numbers ....... $\begin{array}{llllllllll} & 5 & 12 & 7 & 3 & 2 & 5 & 1\end{array}$
(b) Calculate the new mean when a 9 is added.
5. Seven women have weights of $44 \mathrm{~kg}, 51 \mathrm{~kg}, 57 \mathrm{~kg}, 63 \mathrm{~kg}, 48 \mathrm{~kg}, 49 \mathrm{~kg}$ and 45 kg .
(a) Find the mean weight of the seven women.
(b) Find the mean weight of the remaining five women after the lightest and the heaviest women leave.
6. The average weight of 12 boxes is $2 \cdot 4 \mathrm{~kg}$.
(a) What is the total weight of all 12 boxes?
(b) If an extra box is added weighing $1 \cdot 1 \mathrm{~kg}$, what is the average weight of the thirteen boxes?
7. The mean of six numbers is $4 \cdot 7$. The mean of a different four numbers is $6 \cdot 5$.

Calculate the mean of all ten numbers together.
8. The mean height of eight tomato plants is 42 cm . A ninth plant is added to the group and the mean height of all nine plants is 43 cm . Establish the height of the ninth plant.
9. The following are the heights (in metres) of a group of people:

$$
1 \cdot 6,1 \cdot 7,1 \cdot 9,1 \cdot 8,1 \cdot 6,1 \cdot 7,1.5,1 \cdot 9,1 \cdot 6,1 \cdot 8
$$

(a) Find the mean, median and modal height of the group.
(b) When a new member joined the group the mean height became 1.7 m exactly. What height was the new member?

## Statistics (2) - Mean, Median \& Mode (Frequency Tables)

1. Calculate the mean and determine the median and mode for each frequency table below.

| Apple Weight (g) | $f$ |
| :---: | :---: |
| 70 | 2 |
| 71 | 6 |
| 72 | 9 |
| 73 | 11 |
| 74 | 8 |
| 75 | 3 |
| 76 | 1 |


| Eggs in Nest | $f$ |
| :---: | :---: |
| 1 | 5 |
| 2 | 15 |
| 3 | 25 |
| 4 | 30 |
| 5 | 15 |
| 6 | 10 |


| Test Marks $/ 10$ | $f$ |
| :---: | :---: |
| 3 | 1 |
| 4 | 0 |
| 5 | 2 |
| 6 | 8 |
| 7 | 9 |
| 8 | 13 |
| 9 | 9 |
| 10 | 8 |

2. Twenty-five children were measured and their heights are shown in the frequency table below.

| height (metres) | 1.4 | 1.44 | 1.48 | 1.52 | 1.56 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| frequency | 3 | 5 | 6 | 8 | 3 |

Calculate the mean height of the 25 children correct to 1 decimal place.
3. In a survey the number of occupants in the cars passing a school was recorded.

The results have been shown in the histogram opposite.
(a) How many cars were in the survey?
(b) What is the modal number of occupants?
(c) Construct a frequency table from the diagram and

occupants
4. The graph opposite shows the number of goals scored by 25 football teams on a particular Saturday.
(a) What is the range of goals scored?
(b) State the median and modal number of goals.
(c) What percentage of the teams scored 2 goals?
(d) Construct a frequency table from the graph and use it to calculate the mean number of goals scored.

5. (Extension) Construct your own frequency table to fit the following criteria:

$$
\text { Range }=5, \sum f=15, \text { mode }=7, \text { median }=6, \text { mean }=6
$$

## Statistics (3) - Quartiles,Semi-interquartile Range \& Cumulative Frequency

1. For each data set below establish the value of the median $\left(\mathrm{Q}_{2}\right)$ and the quartiles $\mathrm{Q}_{1}$ and $\mathrm{Q}_{3}$. Hence calculate the semi-interquartile range for each set.

| (a) | 4 | 4 | 5 | 6 | 8 | 10 | 10 | 10 | 12 | 13 | 18 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (b) | 23 | 32 | 32 | 34 | 35 | 40 | 41 | 47 | 50 |  |  |  |
| (c) | 4 | 4 | 5 | 7 | 8 | 9 | 9 | 9 | 12 | 14 |  |  |
| (d) | 23 | 34 | 38 | 46 | 58 | 71 |  |  |  |  |  |  |
| (e) | 10 | 12 | 12 | 13 | 15 | 20 | 21 | 21 | 26 | 32 | 38 | 41 |
| (f) | 43 | 28 | 27 | 32 | 50 | 19 | 24 | 47 |  |  |  |  |

2. For each frequency table below : i) Copy the table and complete the cumulative frequency column.
ii) Work out the two quartiles, $\mathrm{Q}_{1}$ and $\mathrm{Q}_{3}$ and the median $\left(\mathrm{Q}_{2}\right)$.
iii) Calculate the semi-interquartile range.

| Cats in litter | $f$ | Cum. $f$ |
| :---: | :---: | :---: |
| 6 | 2 |  |
| 7 | 3 |  |
| 8 | 4 |  |
| 9 | 6 |  |
| 10 | 3 |  |
| 11 | 1 |  |

(a)

| Hours of Sunshine (day) | $f$ | Cum. $f$ |
| :---: | :--- | :--- |
| 8 | 4 |  |
| 9 | 5 |  |
| 10 | 8 |  |
| 11 | 5 |  |
| 12 | 6 |  |
| 13 | 1 |  |
| 14 | 1 |  |


| Matches in Box | $f$ | Cum. $f$ |
| :---: | :---: | :---: |
| 48 | 3 |  |
| 49 | 3 |  |
| 50 | 6 |  |
| 51 | 7 |  |
| 52 | 10 |  |
| 53 | 7 |  |
| 54 | 9 |  |
| 55 | 5 |  |

(c)

| Plant Height (cm) | $f$ | Cum. $f$ |
| :---: | :---: | :---: |
| 120 | 5 |  |
| 121 | 17 |  |
| 122 | 18 |  |
| 123 | 14 |  |
| 124 | 24 |  |
| 125 | 14 |  |
| 126 | 8 |  |

3. Draw a cumulative frequency curve (an ogive) for each distribution in question 2.

Mark the median and the upper and lower quartiles, as accurately as you can, on each curve.
4. Two cumulative frequency curves are shown below.

For eaeh curve estimate the median and the upper $\left(\mathrm{Q}_{3}\right)$ andplower $\left(\mathrm{Q}_{1}\right)$ quartiles.
Pegasys 2004
(a)



## Statistics (4) - Boxplots (the five-figure summary)

1. The life-span (in months) of a sample of eleven lightbulbs is shown below.

$$
\begin{array}{lllllllllll}
2 & 3 & 6 & 7 & 8 & 8 & 9 & 11 & 12 & 14 & 17
\end{array}
$$

These results are now illustrated using a boxplot.


Make a five-figure summary to find the values of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E .
2. The boxplot below shows the number of hours overtime worked in a small factory in a particular month.

(a) What is the greatest and least number of overtime hours worked?
(b) What is the median of this distribution?
(c) What percentage of the workforce completed between 8 and 17 hours overtime?
(d) Calculate the range and the semi-interquartile range for this data.
3. For each data set below ..... i) make a five-figure summary;
ii) draw a boxplot;
iii) calculate the semi-interquartile range.

| (a) | 5 | 6 | 7 | 7 | 8 | 8 | 12 | 12 | 12 | 13 | 15 | 20 | 21 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (b) | 16 | 18 | 18 | 20 | 26 | 27 | 39 | 40 |  |  |  |  |  |
| (c) | 1 | 1 | 5 | 6 | 6 | 8 | 9 | 9 | 9 | 9 | 12 | 20 | 24 |

4. In a particular French holiday resort the number of hours sunhine over a twelve day period in June and over a similar period in July were recorded. The results are shown below.

| June - | 8 | 6 | 9 | 7 | 4 | 2 | 12 | 13 | 1 | 7 | 9 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| July - | 10 | 12 | 9 | 9 | 15 | 14 | 2 | 3 | 9 | 8 | 16 | 4 |

(a) Make a five-figure summary for both June and July's data.
(b) Draw a composite boxplot.
(i.e. draw a boxplot for each set on the same diagram)

(c) State the median and calculate the range and semi-interquartile range for each set.
(d) Compare and comment on the two sets of data.

Trigonometry (1)
You need a scientific calculator for this worksheet. Round all answers to 1 d.p. where necessary.

1. Find the size of angle $x$ in each diagram.

(a)

(b)


23

(f)


2. Calculate the length of the side marked $x$ in each triangle below.
(a)

(b)


(d)

(e)


3. Calculf ef length of the side

(b)



## Trigonometry (2) - More Practice

You need a scientific calculator for this worksheet.

Find the angles and sides marked with letters.

1.

2.

3.
c

4.

5.

6.

9.

13.

10.

7.

8.

12.

16.

17.
Pegasys 2004
18.

19.


## Trigonometry (3) - Isosceles Triangles \& Frameworks

You need a scientific calculator for this worksheet.


(b)

(c)

2. The diagram opposite represents a buoy used for tying-up small boats.

Calculate the vertical height ( $h$ ) of its triangular frame.

3. To comply with building regulations a roof must have an angle of between $21^{\circ}$ and $28^{\circ}$ to the horizontal (see diagram).

Which, if any, of the two roofs below comply with the building regulations?
(a)

(b)

4. The diagram opposite shows part of the framework for a small hinged bracket.
(a) Calculate the length of DB .
(b) Hence calculate the length of BC.

5. The diagram opposite represents a playground chute.
$A C$ represents the slide and $A B$ the stairs.
A local council ruling states " for a slide to be safe the maximum permissible angle between the slide and

the ground is $35^{\circ}$.
Does this diagram represent a "safe" slide?

## Trigonometry (4) - Problems

You need a scientific calculator for this worksheet.
Most of the problems below will require you to draw a neat sketch before attempting to answer the question.


1. A ladder of length 4 m rests against a vertical wall so that the base of the ladder is 1.5 m from the wall.
Calculate the angle between the ladder and the ground.
2. A ladder of length 5 m leans against a vertical wall so that the base of the ladder is 2 m from the wall.
Calculate the angle between the ladder and the wall.
3. A vertical telegraph pole has a wire support of length 9 m stretching from the top of the pole to the ground so that the angle between the wire support and the ground is $65^{\circ}$. How far is the end of the wire support from the base of the pole?
4. A vertical aerial mast has a wire support of length 12 m stretching from the top of the mast to the ground so that the angle between the wire support and the ground is $78^{\circ}$.
Calculate the height of the mast.
5. A ladder of length 4.8 m rests against a vertical wall so that it reaches up the wall to a height of 4.3 m .

Calculate the angle between the ladder and the ground.
6. A tall thin tree has a height of 15 m . A rope support stretches from the top of the tree to a point on the ground out from the base of the tree.
If the angle between the rope and the ground is $62^{\circ}$, calculate the length of the rope support.
7. From a distance of 20 m from the base of a tower the angle of elevation to the top of the tower is $38^{\circ}$. How high is the tower?
8. $\quad \mathrm{P}$ is a point 30 m from the base of a building. The building has a height of 18 m .

Calculate the angle of elevation to the top of the building from P .
9. A girl is flying a kite from a string of length 46 m .

The string is taut, and is being held 1 m above the ground.
Calculate the height of the kite above the ground if the angle of elevation is $36^{\circ}$ between the string and the horizontal.
10. The frame of a bicycle is shown in the diagram opposite.

Find the length of the cross bar, AB .
11. Consider the diagram opposite.


Calculate the length marked $x$.

## Simultaneous Equations (1)

1. Solve the following systems of equations by "elimination".
(a) $\quad 2 x+4 y=24$
(b) $\quad 4 a-3 b=18$
(c) $\quad \begin{aligned} 2 e+7 f & =26 \\ 8 e-5 f & =38\end{aligned}$
(d) $\quad \begin{aligned} & 5 x+y=-2 \\ & 3 x+2 y=3\end{aligned}$
(e) $\quad \begin{aligned} 2 x-3 y & =10 \\ 3 x-6 y & =18\end{aligned}$
(f) $\quad \begin{aligned} 4 p+3 q & =1 \\ 8 p+5 q & =-1\end{aligned}$
(g) $\quad \begin{aligned} 2 g+3 h & =1 \\ 5 g-2 h & =-26\end{aligned}$
(h) $\quad \begin{aligned}-2 x+3 y & =6 \\ 9 x-7 y & =-1\end{aligned}$
(i) $\quad \begin{aligned} 2 u+4 v & =-16 \\ 11 u-7 v & =-1\end{aligned}$
(j) $\quad \begin{aligned} 2 x-8 y & =0 \\ 5 x-5 y & =15\end{aligned}$
(k) $\quad \begin{aligned} 3 p+2 q & =-11 \\ 4 p+3 q & =-14\end{aligned}$
(l) $\quad \begin{aligned} 10 a-3 b & =46 \\ 6 a-8 b & =40\end{aligned}$
2. Solve the following systems of equations by "substitution".
(a) $\quad \begin{aligned} x+3 y & =17 \\ 3 x-2 y & =-4\end{aligned}$
(b) $\quad \begin{aligned} a-3 b & =6 \\ 3 a+b & =8\end{aligned}$
(c) $\quad \begin{aligned} 2 e+f & =1 \\ 5 e-2 f & =-20\end{aligned}$
(d) $\quad \begin{aligned} 5 x+3 y & =7 \\ 4 x+y & =0\end{aligned}$
(e) $\quad \begin{aligned} 2 x-5 y & =-14 \\ x-2 y & =-5\end{aligned}$
(f) $\quad \begin{aligned} & 2 p+3 q=6 \\ & 4 p+q=-8\end{aligned}$
(g) $\quad \begin{aligned} 2 g+h & =11 \\ 7 g-8 h & =96\end{aligned}$
(h) $\quad \begin{aligned} 3 x-2 y & =25 \\ x+5 y & =-3\end{aligned}$
(i) $\quad \begin{aligned} u-4 v & =10 \\ 9 u-2 v & =22\end{aligned}$
(j) $\begin{aligned} & 2 x=3 y+5 \\ & x+5 y=9\end{aligned}$
(k)
$3 p-2 q+7=0$
$4 p+q=-2$
(l) $\quad \begin{aligned} 4 a+b-30 & =0 \\ 6 a+5 b-38 & =0\end{aligned}$
3. Solve the following simultaneous equations "graphically".
(a) $\quad \begin{aligned} x+y & =6 \\ 2 x+y & =8\end{aligned}$
Draw axes with $x$ and $y$ from 0 to 8
(b) $\quad \begin{aligned} x+2 y & =8 \\ 3 x+y & =9\end{aligned}$
Draw axes with $x$ and $y$ from 0 to 9
(c) $\quad x+3 y=6$
Draw axes with $x$ from 0 to 8 and $y$ from -2 to 4
(d)

$$
\begin{aligned}
& 2 x+3 y=12 \\
& x+y=5 \\
& \text { (e) } \\
& 3 x+4 y=24 \\
& 3 x+2 y=18
\end{aligned}
$$

Draw axes with $x$ and $y$ from 0 to 7
(f)
$5 x+y=10$
Draw axes with $x$ and $y$ from 0 to 9
Draw axes with $x$ from -4 to 4 and $y$ from 0 to 10

## Simultaneous Equations (2)

## Problems Leading to Simultaneous Equations

Note: each question must begin with the construction of two separate equations each with two stated unknowns.

1. Find two numbers whose sum is 56 and whose difference is 16 .
2. Find two numbers whose sum is 22 and where twice the big one minus three times the small one is 24 .
3. Two numbers are such that twice the smaller plus the larger is equal to 18 and the difference between twice the larger and the smaller is 11 .
Find the two numbers.
4. Two numbers are such that three times the larger plus twice the smaller is equal to 31 and the sum of twice the smaller plus the larger is 13 .
Find the two numbers.
5. Consider the two rectangles opposite.

The smaller one has a perimeter of 60 cm .


The larger one has a perimeter of twice the smaller.
(a) Form two equations and solve them simultaneously to find the values of $x$ and $y$.
(b) Hence calculate the area of the smaller rectangle.

6. A van is carrying eight identical boxes and five identical parcels.
(a) If 3 boxes and 2 parcels weigh a total of 22 kg and 4 boxes and 3 parcels weigh 30 kg , find the weight of an individual box and a single parcel.

(b) What is the total weight carried by the van?
7. 3 pounds of butter and 4 pints of milk costs $£ 3.84$.

5 pounds of butter and 7 pints of milk costs $£ 6.48$.
Find the cost of a pound of butter and a single pint of milk.

8. In a certain factory, the basic rate of pay is $£ 4.50$ per hour, with overtime at $£ 6.40$.

His total wage for a certain week was $£ 215.80$.
If he worked a total of 45 hours in all, how many hours did he work at the basis rate?
9. At a concert 500 tickets were sold. Cheap tickets cost $£ 5$ whereas more expensive ones cost $£ 9$. If the total receipts were $£ 3220$, how many cheap tickets were sold?
10. John saves money by putting every 50 p and every 20 p coin he recieves in a box. After a while he discover's that he has 54 coins amounting to $£ 17.10$. How many 50 p coins does he have?

## Area (1)

## Important formulae



Calculate the area of each shape below:
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)
(j)


## Area (2)

Calculate the area of each composite shape below:
(note.... assume right-angles where obvious)

## Round your answers to 1 decimal place where necessary.

(a)

(c)

(b)

(d)

(e)

(g)

(f)

(h)


## Area (3) - Problems

Round your answers to 1 decimal place where necessary.

1. Calculate the shaded area in each diagram below.
(a)

(b)

2. A rectangular steel plate measures 40 cm by 25 cm .

Four holes, each with a diameter of 10 cm , have been drilled through the plate.
(a) Calculate the area of metal remaining, after the holes have been drilled.
(b) What percentage of metal has been wasted?
3. A piece of thin plastic is in the shape of a square of side 18 cm .
(a) Calculate the area of the largest circular hole which can be drilled through the plastic.
(b) What percentage of the plastic has been lost to create this circular disc?
4. Calculate the shaded area in the diagram opposite.

5. The diagram below shows a lawn (unshaded) surrounded by a path of uniform width (shaded). The curved end of the lawn is a semi-circle of diameter 14 metres.

(a) Calculate the area of the lawn.
(b) Calculate the area of the path.
6. A rectangular sheet of metal measures 60 cm by 20 cm . It is melted down and recast into circular discs of the same thickness as the original sheet and with radius 5 cm .
How many complete discs can be cast?
Volume (1)

## Important formulae:

Cuboid: $\quad V=l \times b \times h=l b h$
Prism : $\quad V=$ face area $\times 3^{\text {rd }}$ dimension $=A \times l$
Cylider: $\quad V=\pi r^{2} h$
Sphere: $\quad V=\frac{4}{3} \pi r^{3}$
Cone: $\quad V=\frac{1}{3} \pi r^{2} h$
Pyramid $\quad V=\frac{1}{3}($ base area $) \times h e i g h t=\frac{1}{3}$ Ah

1. Calculate the volume of each cuboid below:

(b)

(c) 4 cm

2. Calculate the volume of each prism below:
(b)



Volume (2)

1. Calculate the volume of each cylinder with given radius and height.

(a) $r=2 \mathrm{~cm}, h=6 \mathrm{~cm}$
(b) $r=8 \mathrm{~cm}, h=3 \mathrm{~cm}$
(c) $r=4 \mathrm{~mm}, h=10 \mathrm{~mm}$
(d) $r=3 \mathrm{~m}, \quad h=2 \mathrm{~m}$
2. A cylinder has a diameter of 20 cm and a height of 16 cm . Calculate its volume.
3. A cylinder has a diameter of 2.6 m and a height of 80 cm .

Calculate its volume to the nearest cubic metre.
4. Calculate the volume of each sphere described below, rounding your answer to 1 decimal place.

5. A sphere has a diameter of 8 cm .

Calculate its volume giving your answer correct to 3 significant figures.
6. Calculate the volume of each cone described below, rounding your answers to 1 decimal place.

(a) $r=3 \mathrm{~cm}, h=6 \mathrm{~cm}$
(b) $r=8 \mathrm{~mm}$, $h=12 \mathrm{~mm}$
(c) $r=3 \mathrm{~cm}, h=5 \mathrm{~cm}$
(d) $r=2 \mathrm{~m}, \quad h=6 \mathrm{~m}$
7. A cone has a base diameter of 8 cm and a height of 5 cm . Calculate the volume of this cone.
8. A cone has a base diameter of 10 cm and a slant height of 13 cm . Calculate the volume of the cone.
9. A cone has a base radius of 9 cm and a slant height of 15 cm . Calculate the volume of the cone.

10. A pyramid has a square base of side 4 cm and a vertical height of 7 cm . Calculate the volume of the pyramid correct to 2 significant figures.
11. A pyramid has a rectangular base measuring 16 mm by 12 mm and a vertical height of 10 mm . Calculate the volume of the pyramid .

## Factorisation

1. Factorise each of the following by first removing a common factor.
(a) $3 x-15$
(b) $5 y+35$
(c) $8 a+48$
(d) $18+6 t$
(e) $x^{2}+9 x$
(f) $3 y-y^{2}$
$(g) \quad b^{2}-4 b$
(h) $5 p+p^{2}$
(i) $a b+a c$
(j) $x^{2}-x y$
(k) $p q-p r$
(l) $a^{2}+a x$
(m) $8 a+20$
(n) $21 y-28$
(o) $24 x+22$
(p) $36 c-63$
2. Factorise each of the following by first removing the highest common factor.
(a) $2 a^{2}+6 a$
(b) $5 x^{2}-40 x$
(c) $30 y-y^{2}$
(d) $3 t^{2}+18 t$
(e) $6 x^{2}-27 x$
(f) $\quad 14 y-10 y^{2}$
(g) $12 b^{2}-32 b$
(h) $25 x^{2}+20 x$
3. Factorise (each expression contains a difference of squares):
(a) $a^{2}-3^{2}$
(b) $x^{2}-2^{2}$
(c) $p^{2}-9^{2}$
(d) $c^{2}-5^{2}$
(e) $b^{2}-1$
(f) $y^{2}-16$
(g) $\quad m^{2}-25$
(h) $a^{2}-9$
(i) $36-d^{2}$
(j) $4-q^{2}$
(k) $49-w^{2}$
(1) $x^{2}-64$
(m) $81-4 g^{2}$
(n) $36 w^{2}-y^{2}$
(o) $4 a^{2}-1$
(p) $g^{2}-81 h^{2}$
(q) $49 x^{2}-y^{2}$
(r) $\quad 9 c^{2}-16 d^{2}$
(s) $4 p^{2}-9 q^{2}$
(t) $b^{2}-100 c^{2}$
4. Factorise each of the following quadratic expressions:
(a) $b^{2}+7 b+12$
(b) $x^{2}+14 x+45$
(c) $s^{2}+11 s+24$
(d) $y^{2}+11 y+28$
(e) $b^{2}+6 b+9$
(f) $\quad c^{2}+13 c+42$
(g) $a^{2}+12 a+32$
(h) $y^{2}+6 y+8$
(i) $x^{2}-6 x+5$
(j) $\quad c^{2}-6 c+8$
(k) $y^{2}-10 y+21$
(l) $b^{2}-14 b+48$
(m) $\quad x^{2}-7 x+10$
(n) $s^{2}-13 s+40$
(o) $y^{2}-11 y+18$
(p) $a^{2}-8 a+16$
5. Factorise:
(a) $x^{2}+4 x-5$
(b) $a^{2}-4 a-21$
(c) $t^{2}-t-20$
(d) $y^{2}+4 y-32$
(e) $c^{2}-5 c-14$
(f) $\quad x^{2}-5 x-6$
(g) $b^{2}+7 b-18$
(h) $p^{2}-8 p-20$
(i) $y^{2}-y-56$
(j) $z^{2}-2 z-24$
(k) $\quad x^{2}-3 x-28$
(l) $a^{2}-13 a-30$
(m) $\quad c^{2}+c-20$
(n) $\quad p^{2}-6 p-7$
(o) $b^{2}+5 b-50$
(p) $x^{2}+3 x-18$
6. Evaluate the following formulae for the values given:
(a) $T=3 s+2, \quad$ find $T$ when $s=18$
(b) $P=5 q-7$, find $P$ when $q=3$
(c) $R=40-8 x, \quad$ find $R$ when $x=2 \cdot 5$
(d) $z=3+5 y$, find $z$ when $y=1 \cdot 8$
(e) $k=2 a+3 b, \quad$ find $k$ when $a=7, b=2$
(f) $R=C+P t$, find $R$ when $C=0 \cdot 6, P=2 \cdot 4, t=7$
(g) $P=k T-0 \cdot 8$, find $P$ when $k=4, T=1 \cdot 7$
(h) $Y=1 \cdot 9+s Z, \quad$ find $Y$ when $s=2 \cdot 8, Z=0 \cdot 5$
7. The following formulae are used in mathematics and science.

Evaluate each formula for the numbers given:
(a) $\quad V=\frac{\pi r^{2} h}{3}$
(b) $\quad R=\frac{V}{I}$
(c) $\quad v=f \lambda$
(d) $E=m g h$
(e) $A=\pi r s$
(f) $v=u+a t$
(g) $s=u t+1 / 2 a t^{2}$
(h) $A=2 \pi r h$
(i) $\quad P=I^{2} r$
(j) $\quad A=\pi\left(R^{2}-r^{2}\right)$
(k) $e=1 / 2 m v^{2}$
(1) $h=\frac{A V t}{m T}$
(m) $\quad F=\frac{m v-m u}{t}$
(n) $s=\frac{v^{2}-u^{2}}{2 a}$
(o) $\mathrm{a}=\sqrt{b^{2}-c^{2}}$

Find $V$ when $\pi=3 \cdot 14, r=9, h=35$.

Find $R$ when $I=5$ and $V=0 \cdot 1$.
Find $v$ when $f=18$ and $\lambda=2 \cdot 5$.
Find $E$ when $m=70, g=10$ and $h=2$.
Find $A$ when $\pi=3 \cdot 14, r=2 \cdot 5$ and $s=12$.
Find $v$ when $u=18, a=6$ and $t=9$.
Find $s$ when $a=0 \cdot 2, t=90$ and $u=0$.
Find $A$ when $\pi=3 \cdot 14, r=24$ and $h=50$.
Find $P$ when $I=5, r=15$.
Find $A$ when $\pi=3 \cdot 14, R=20$ and $r=8$.
Find $e$ when $m=2$ and $v=16$.

Find $h$ when $A=6, m=0.8, V=12, t=60, T=20$.

Find $F$ when $m=2, u=4, v=7$ and $t=3$.

Find $s$ when $a=1 / 2, u=3$ and $\mathrm{v}=5$.

Find $a$ when $b=31 \cdot 2$ and $c=12$.

## Formula (2) - Changing the Subject of a Formula

1. Change the subject of each formula to $x$.
a. $\quad y=x+3$
b. $y=x-5$
c. $y=x+a$
d. $\quad y=x-b$
e. $y=3 x$
f. $y=10 x$
g. $\quad y=k x$
h. $y=a x$
i. $y=3 p+x$
j. $\quad y=x-5 t$
k. $y=2 x+1$
2. $y=3 x-7$
m. $y=7 x+4 a$
n. $y=3 b+4 x$
o. $y=8+10 x$
3. Make $x$ the subject of each formula below.
a. $\quad y=a x+b$
b. $\quad y=m x+c$
c. $\quad t=s x-r$
d. $\quad p=q x+2 r$
e. $\quad m=f x-3 n$
f. $\quad a=b+c x$
g. $k=h-m x$
h. $\quad d=3 b+c x$
i. $\quad g=k c-h x$
4. Change the subject of each formula to the letter shown in brackets.
a. $\quad P=4 l$
(l)
b. $\quad V=I R$
(I)
c. $\quad S=D T$
d. $\quad A=l b$
(b)
e. $\quad C=\pi d$
(d)
f. $\quad G=U T$
g. $\quad v=u+a t$
(t)
h. $\quad P=2 l+2 b$
(l) i.
. $H=x y+5 m$
5. Make x the subject of each formula.
a. $y=\frac{3}{x}$
b. $\quad d=\frac{c}{x}$
c. $\quad m=\frac{y}{x}$
d. $s=\frac{a+2}{x}$
e. $\quad w=\frac{z-1}{x}$
f. $\quad a=\frac{b+c}{x}$
g. $\quad a=\frac{x+8}{9}$
h. $k=\frac{x-5}{2}$
i. $\quad p=\frac{3-x}{4}$
j. $\quad y=\frac{2}{x}+1$
k. $z=\frac{6}{x}-7$
6. $h=\frac{m}{x}+k$
7. Change the subject of each formula to the letter shown in brackets.
a. $\quad v^{2}=u^{2}+2 a s$
b. $v^{2}=u^{2}+2 a s$
c. $\quad V=\pi r^{2} h$
(h)
d. $\quad V=\pi r^{2} h$
e. $r=\sqrt{\frac{A}{\pi}}$
f. $\quad L=3+\sqrt{6 a}$
g. $\quad 2 k=\sqrt{(p+4)}$
(p)
h. $\quad x^{2}=\frac{4 y z}{t}$
i. $\quad a r=\frac{1}{2} \sqrt{\frac{x}{b}}$
j. $\quad s t=A^{2}(x-3 y)$
k. $\quad R=A^{2}(x-3 y)$
8. $n a=\sqrt{\left(1-n^{2}\right)}$
(n)
m. $d=\frac{t(n-1)}{n}$
(n)
n. $\frac{1}{R}=\frac{1}{r_{1}}+\frac{1}{r_{2}}$

## Expressions \& Formulae

1. 

(a) 0
(b) 16
(c) 7
(d) 11
(e) 80
(f) 64
2.
(a) $\quad E=19$
(b) $\quad E=24$
(c) $\quad E=89$
3.
(a) 23
(b) 10
(c) 9
4.
(a) $\frac{2}{5}$
(b) $\frac{1}{2}$
(c) $\frac{1}{6}$
(d) $\frac{1}{5}$
5.
(a) $\quad P=161$
(b) $\quad P=117$
(c) $\quad P=429$
(d) $\quad P=12 \cdot 5$
(e) $\quad P=7 \cdot 12$
(f) $\quad P=112$
6.
(a) $2 \cdot 5$
(b) $9 \cdot 8$
(c) 1200
(d) $5 \cdot 0$

## Scientific Notation

1. 

(a) $1.2 \times 10^{3}$
(b) $4 \cdot 125 \times 10^{6}$
(c) $2.25 \times 10^{2}$
(d) $6.7 \times 10^{4}$
(e) $9 \times 10^{0}$
(f) $4 \cdot 1 \times 10^{7}$
(g) $9 \cdot 2 \times 10^{1}$
(h) $2.4 \times 10^{11}$
2.
(a) $5000000,5 \times 10^{6}$
(b) $32000,3 \cdot 2 \times 10^{4}$
(c) $52100000,5 \cdot 21 \times 10^{7}$
(d) $243000,2.43 \times 10^{5}$
3.
(a) $5.7 \times 10^{-2}$
(b) $2 \cdot 1 \times 10^{-3}$
(c) $8.4 \times 10^{-1}$
(d) $9 \cdot 15 \times 10^{-9}$
(e) $7 \times 10^{-4}$
(f) $8.004 \times 10^{-2}$
(g) $1 \cdot 2 \times 10^{-6}$
(h) $6 \times 10^{-1}$
4.
(a) 160000
(b) 2780
(c) 122000000
(d) 40000
(e) $200 \cdot 3$
(f) $5 \cdot 7$
(g) $0 \cdot 006$
(h) $0 \cdot 00000452$
(i ) $0 \cdot 0001003$
(j) $0 \cdot 000072$
(k) $0 \cdot 23$
(l) $0 \cdot 0060004$
5.
(a) $6 \times 10^{8}$
(b) $8 \times 10^{-2}$
(c) $1.5 \times 10^{7}$
(d) $6 \times 10^{5}$
(e) $1.8 \times 10^{-2}$
(f) $5 \times 10^{6}$
(g) $3 \cdot 2 \times 10^{4}$
(h) $1.39 \times 10^{5}$
(i) $9 \times 10^{-6}$
6.
(a) $6.66 \times 10^{8}$ miles
(b) $4.05 \times 10^{4} \mathrm{~km}$
(c) $2.94 \times 10^{9}$ times
(d) $2 \times 10^{7}$ drops
(e) $3 \times 10^{30}$ atoms

Similarity (1)
1.
(a) i) $k=\frac{3}{2}$ or $1 \cdot 5$
ii) $13 \cdot 5 \mathrm{~cm}$
(b) i) $k=\frac{2}{3}$ or $0 \cdot 666 .$.
ii) 20 cm
(c) i) $k=\frac{5}{2}$ or $2 \cdot 5$
ii) 45 cm
(d) i) $k=\frac{3}{5}$ or $0 \cdot 6$
ii) 168 mm
2.
(a) $88 \mathrm{~cm}^{2}$
(b) $166 \mathrm{~mm}^{2}$
(c) $49 \mathrm{~cm}^{2}$
(d) $72 \mathrm{~mm}^{2}$
3.
(a) 1200 ml
(b) 270 ml
(c) $6 \cdot 75$ litres

## Similarity (2)

1. 

(a) $x=30 \mathrm{~mm}$
(b) $x=32 \cdot 5 \mathrm{~cm}$
2.
(a) Because they are equiangular
(b) $\mathrm{CD}=18 \mathrm{~cm}$
(c) $81 \mathrm{~cm}^{2}$
3.
(a) $x=13 \cdot 5 \mathrm{~cm}$
(b) $x=14 \cdot 4 \mathrm{~mm}$
4. $\mathrm{ST}=16 \mathrm{~cm}$
5. $\quad$ distance $=0.7 \mathrm{~m}$

## Speed, Distance \& Time

1. 

(a) 96 km
(b) $7 \cdot 5 \mathrm{~km} / \mathrm{h}$
(c) 7 hrs 15 mins
(d) $56 \mathrm{~km} / \mathrm{h}$
(e) 100 km
2. 2 hrs 33 mins
3. 5 hrs 17 mins
4.
(a) 2 hrs 28 mins
(b) 57 mph
5.
(a) 45 mins
(b) $80 \mathrm{~km} / \mathrm{h}$
(c) $520 \div 7=74 \cdot 3 \mathrm{~km} / \mathrm{h}$

## Saving \& Spending (1)

1. $£ 558$
2. $£ 213.30$
3. 

(a) $£ 4620$
(b) $£ 1478.40$
(c) $£ 86.95$
(d) $27 \%$
4. (a) Cash $=£ 8600$, H.P. $=£ 9930$, Lease $=£ 9450$; Total saved $=9930-8600=£ 1330$ (b) $15 \%$
5. 48 dollars
6. £1860
1.
(a) 45850
(b) $458 \cdot 5$ therms
(c) $£ 163.22$
2.
(a)

| Units Used | Amount |
| :---: | :---: |
| 727 | $£ 28.06$ |
| 566 | $£ 8.72$ |
|  | $£ 12.50$ |
|  | $£ 49.28$ |

(b) $£ 61.60$
3. £ 357.20
4. £ 308 per month
5. £ 1071

## Positive \& Negative Numbers

1. 

(a) -3
(b) 5
(c) 2
(d) -5
(e) -9
(f) -5
(g) -4
(h) -7
(i) 6
(j) -3
(k) 2
(l) 0
2.
(a) $-3 x$
(b) $-2 a$
(c) $3 x$
(d) $-3 p$
(e) $5 e$
(f) $-4 d$
(g) $2 h$
(h) $-10 a$
(i) $6 k$
(j) $-2 p$
(k) $-2 m$
(1) $3 y$
3.
(a) -30
(b) 14
(c) -12
(d) -16
(e) $-5 a$
(f) $-24 p$
(g) $-14 y$
(h) $\quad 27 d^{2}$
4.
(a) $\quad x=-2$
(b) $t=-5$
(c) $m=-1$
(d) $y=1$
(e) $a=-2$
(f) $d=0$
(g) $y=-8$
(h) $\quad a=4$
(i) $d=-2$
(j) $\quad h=-3$
(k) $p=1$
(1) $x=1$
(m) $\quad p=-7$
(n) $\quad h=-3$
(o) $\quad x=-8$
(p) $y=4$
(q) $k=-9$
(r) $\quad a=-3$
5.
(a) -2
(b) 6
(c) 1
(d) -8
(e) 12
(f) -1
(g) -4
(h) 0
(i) 2
(j) 16
(k) 27
(l) 64
(m) -5
(n) 5
(o) 6
(p) 16
6.
(a) -2
(b) 3
(c) -2
(d) -3
(e) -1
(f) -1
(g) 4
(h) -10

## Pythagoras (1)

1. 

(a) $x=9 \cdot 4$
(b) $x=21 \cdot 3$
(c) $x=13$
(d) $x=10 \cdot 2$
(e) $x=1 \cdot 1$
(f) $\quad x=5 \cdot 1$
(g) $\quad x=12 \cdot 4$
(h) $x=26.9$
(i) $x=2 \cdot 4$
2. (a) $\mathrm{BD}=10$
(b) $\mathrm{BC}=15 \cdot 6$
(c) $\quad$ Area $=180 \mathrm{~cm}^{2}$
3. (a) 21 or 21.1 cm
(b) Area $\approx 357 \mathrm{~cm}^{2}$
4.
(a) $7 \cdot 1$
(b) $12 \cdot 5$
(c) $8 \cdot 1$
(d) $10 \cdot 2$

## Pythagoras (2)

1. 

(a) 11.7 cm
(b) $12 \cdot 7$
2.
(a) 20 cm
(b) 15 cm
3.
(i) Yes
(ii) No
(iii) Yes
4.
(a) 15 cm
(b) 16 cm
(c) Proof
(d) $\mathrm{BC}=10 \mathrm{~cm}$, Area $=225 \mathrm{~cm}^{2}$

## Pythagoras (3) - Problems

1. $19 \cdot 2 \mathrm{~km}$
2. 9.6 km
3. $15 \cdot 6 \mathrm{~mm}$
4. $4 \cdot 6 \mathrm{~m}$
5. 16 cm
6. $\mathrm{P}=16.9 \mathrm{~m}$
7. $1.9(2) \mathrm{m}$

## Brackets \& Equations (1)

1. 

a) $3 c+15$
b) $2 w-8$
c) $6 f+2$
d) $3 t+24$
e) $5 g-15$
f) $7 w+7 x$
g) $6 y-18$
h) $7 p+14 q$
i) $4+8 y$
j) $8 p+72 k$
k) $5+10 a$
l) $28 f+8 g$
m) $8+24 e$
n) $10+15 w$
o) $h^{2}+2 h$
p) $a^{2}+5 a$
q) $c^{2}-5 c$
r) $e^{2}-2 e$
s) $\quad f+4 f^{2}$
t) $2 t^{2}+8 t$
u) $p^{2}+p q$
v) $3 p^{2}+p$
w) $5 a h+5 a^{2}$
x) $3 r p-6 r^{2}$
2.
a) $\quad-4 d-12$
b) $\quad-2 x+6$
c) $\quad-5 d-10$
d) $\quad-3 a+12$
e) $\quad-7 e^{2}-35 e$
f) $\quad-9 x-81$
g) $-6 p^{2}+42 p$
h) $-8 k-56$
i) $\quad-3 y+6 y^{2}$
j) $-7-42 h$
k) $-25 v+10 v^{2}$
l) $\quad-4 p+32 p^{2}$
3.
a) $x=6$
b) $\quad p=3$
c) $\quad x=8$
d) $\quad p=2$
e) $m=3$
f) $\quad v=2$
g) $\quad x=4$
h) $y=5$
i) $\quad p=-6$
j) $\quad a=7$
k) $\quad a=1$
l) $\quad x=2$
m) $m=-\frac{1}{3}$
n) $y=\frac{3}{2}$
o) $\quad x=\frac{3}{12}=\frac{1}{4}$
p) $\quad x=-\frac{13}{2}$
q) $\quad p=\frac{7}{6}$
r) $\quad d=4$
4.
a) $3 a+3 b+6 c$
b) $5 x^{2}-10 x+15$
c) $a^{2}+a b-a c$
d) $6 p^{2}-2 p q+2 p$
e) $\quad-3 y^{2}+6 y-15$
f) $-x^{3}-3 x^{2}+x$
a) $7 a-3$
b) $4 x+2$
c) $5 b-6$
d) $10 g-2$
e) 9-5y
f) $12 c-3$
g) $2 h+4$
h) $3 a b+2 a$
i) $6-21 m$
j) $8 y$
k) $9 a-6$
l) $13-4 p$
m) $15 y-4$
n) $b+9$
o) $14-10 y$
p) $-4 x+15$
q) $-3 c+2$
r) $11-12 g$
2.
a) $x^{2}+4 x+3$
d) $b^{2}+6 b+8$
g) $y^{2}+9 y+20$
j) $\quad x^{2}-8 x+15$
m) $a^{2}-13 a+36$
p) $s^{2}-14 s+49$
b) $y^{2}+4 y+3$
c) $a^{2}+7 a+10$
e) $x^{2}+8 x+12$
f) $s^{2}+7 s+6$
h) $b^{2}+10 b+24$
i) $c^{2}+17 c+72$
k) $x^{2}-5 b+6$
l) $c^{2}-18 c+45$
n) $y^{2}-15 y+56$
o) $x^{2}-2 x+1$
q) $d^{2}-14 d+24$
r) $b^{2}-13 b+22$
3.
a) $\quad x^{2}+3 x-10$
b) $a^{2}-a-12$
c) $t^{2}-3 t-18$
d) $y^{2}+3 y-28$
g) $b^{2}+6 b-27$
j) $z^{2}-4 z-12$
m) $c^{2}-2 c-15$
p) $x^{2}+3 x-10$
s) $y^{2}-3 y-4$
v) $b^{2}+8 b-9$
4.
a) $3 x^{2}-18 x+15$
b) $\quad 2 a^{2}+6 a+4$
c) $5 t^{2}-28 t+15$
d) $2 y^{2}-16 y+14$
e) $\quad 3 c^{2}+23 c+14$
f) $2 x^{2}+9 x+10$
g) $3 b^{2}-11 b+8$
h) $5 p^{2}+16 p+11$
i) $9 y^{2}-36 y+36$
j) $4 z^{2}-10 z-6$
k) $4 x^{2}-4 x-3$
l) $12 a^{2}-a-1$
m) $2 c^{2}-5 c-12$
n) $5 p^{2}+13 p-28$
o) $7 b^{2}+8 b-12$
p) $6 x^{2}-x-2$
q) $7 a^{2}+13 a+6$
r) $6 t^{2}-22 t-8$
s) $3 y^{2}-4 y+1$
t) $\quad 9 c^{2}-4$
u) $9 x^{2}-24 x+7$
v) $8 b^{2}+8 b+2$
w) $2 p^{2}+3 p-9$
x) $14 y^{2}-y-3$
5.
a) $x^{2}+2 x+1$
b) $w^{2}-6 w+9$
c) $a^{2}-8 a+16$
d) $c^{2}+12 c+36$
e) $y^{2}-16 y+64$
f) $a^{2}+14 a+49$
g) $b^{2}+4 b+4$
h) $k^{2}+18 k+81$
i) $b^{2}-18 b+81$
j) $x^{2}-20 x+100$
k) $c^{2}-2 c+1$
l) $y^{2}-10 y+25$
m) $p^{2}-20 p+100$
n) $c^{2}-24 c+144$
o) $p^{2}-12 p+36$
p) $x^{2}+8 x+16$
q) $4 g^{2}-4 g+1$
r) $25 y^{2}+30 y+9$
s) $9 q^{2}+12 q+4$
t) $16 a^{2}-8 a+1$
u) $9 y^{2}-36 y+36$
v) $16 h^{2}+8 h+1$
w) $9 x^{2}+24 x+16$
x) $16 b^{2}-40 b+25$
y) $4 d^{2}-32 d+64$
z) $25 a^{2}+40 a+16$
1.
a) $\quad x=4$
b) $\quad x=5$
c) $x=-3$
d) $x=-6$
e) $x=-3$
f) $x=31$
g) $\quad x=0$
h) $x=-5$
i) $\quad x=-1$
j) $\quad x=-2$
k) $x=0$
l) $x=-3$
m) $\quad x=2$
n) $x=-1$
2.
a) $\quad x^{2}+7 x-8$
b) $4 x^{2}-x-3$
c) $4 x^{2}+8 x+5$
d) $-x^{2}-4$
e) $12 x-3$
f) $\quad-10 x-19$
g) $2 x^{2}-10 x+8$
h) $5 x^{2}-x+2$
i) $\quad-4 x^{2}+8 x+21$
j) $3 x^{3}+20 x^{2}+21 x$
k) $2 x^{3}-x^{2}-2 x+9$
l) $-x^{3}-x^{2}-3 x+1$
3.
a) $\quad x=5$
b) $\quad x=7$
c) $x=4$
d) $\quad x=2$
e) $\quad x=1$
f) $\quad x=1$
g) $x=-4$
h) $x=2$
i) $\quad x=-5$
j) $x=-1$

## Brackets \& Equations (4) - Applications

1. 

(a)
i) $\quad P=4 x+12$
ii) $\quad A=x^{2}+6 x+5$
(b) 28 cm
2.
(a) i) $\quad P=8 x+4$
ii) $\quad A=4 x^{2}+4 x-15$
(b) $153 \mathrm{~cm}^{2}$
3. (a) $h^{2}=37 a^{2}+6 a+9$
(b) $\quad h=13$
4. (a) $h^{2}=5 a^{2}-4 a+8$
(b) $\quad h=15$
5. (a) $A=x^{2}+5 x+6$
(b) $\quad P Q=\sqrt{\left(5 x^{2}+22 x+25\right)}$
6.
(a) $\quad P=4 y+8$
(b) $\quad A=y^{2}+4 y-5$
(c) $\quad d=\sqrt{\left(2 y^{2}+8 y+26\right)}$
7. (a) $P=6 x+14, A=2 x^{2}+12 x+10, d=\sqrt{\left(5 x^{2}+18 x+29\right)}$
(a) $\quad P=8 x+4 \quad, \quad A=3 x^{2}+8 x-3 \quad, \quad d=\sqrt{\left(10 x^{2}+10\right)}$
1.
(a)
i) range $=6$
ii) mean $=6$
(b) i) range $=66$
ii) mean $=47$
(c) i) range $=18 \cdot 8$
ii) mean $=8.9$
2.
(a) median $=4$
mode $=3$
(b) median $=33$
mode $=45$
(c) median $=6 \cdot 3 \quad$ mode $=6 \cdot 3$
(d) median $=24$
mode $=24$
(e) median $=11.5$
$\operatorname{mode}=11$
(f) median $=52 \cdot 5$
mode $=75$
3.
(a) 4.9
(b) $35 \cdot 4$
(c) $6 \cdot 0$
(d) $24 \cdot 5$
(e) $12 \cdot 3$
(f) $51 \cdot 5$
4.
(a) 5
(b) $5 \cdot 5$
5.
(a) 51 kg
(b) 50 kg
6.
(a) 28.8 kg
(b) $2 \cdot 3 \mathrm{~kg}$
7. $5 \cdot 42$
8. 51 cm
9. (a) mean $=1.71 \mathrm{~m}, \quad$ median $=1.7 \mathrm{~m}, \quad$ mode $=1.6 \mathrm{~m}$
(b) 1.6 m

## Statistics (2) - Mean, Median \& Mode (Frequency Tables)

1. Table 1: mean $=72 \cdot 25$, median $=73$, mode $=73$

Table 2: mean $=3.65$, median $=4$, mode $=4$
Table 3: mean $=7 \cdot 78$, median $=8$, mode $=8$
2. mean $=1.5 \mathrm{~m}$
3.
(a) 23 cars
(b) 2
(c) frequency table, mean $=2 \cdot 4$ occupants/car
4.
(a) range $=6$ goals
(b) median $=2$ goals, mode $=1$ goal
(c) $16 \%$
(d) frequency table , mean $=2 \cdot 12$ goals
5. A possible answer. $\qquad$

| x | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| frequency | 1 | 2 | 2 | 3 | 5 | 2 |

## Statistics (3) - Quartiles,Semi-interquartile Range $\&$ Cumulative Frequency

1. (a) median $\left(\mathrm{Q}_{2}\right)=10, \mathrm{Q}_{1}=5, \mathrm{Q}_{3}=12$, S.I.R. $=3 \cdot 5$
(b) median $\left(\mathrm{Q}_{2}\right)=35, \mathrm{Q}_{1}=32, \mathrm{Q}_{3}=44$, S.I.R. $=6$
(c) median $\left(\mathrm{Q}_{2}\right)=8 \cdot 5, \mathrm{Q}_{1}=5, \mathrm{Q}_{3}=9$, S.I.R. $=2$
(d) median $\left(\mathrm{Q}_{2}\right)=42, \mathrm{Q}_{1}=34, \mathrm{Q}_{3}=58$, S.I.R. $=12$
(e) median $\left(\mathrm{Q}_{2}\right)=20 \cdot 5, \mathrm{Q}_{1}=12 \cdot 5, \mathrm{Q}_{3}=29$, S.I.R. $=8 \cdot 25$
(f) median $\left(\mathrm{Q}_{2}\right)=30, \mathrm{Q}_{1}=25.5 \quad, \mathrm{Q}_{3}=45 \quad$, S.I.R. $=9 \cdot 75$
2. 

(a) i) column completed
ii) median $\left(\mathrm{Q}_{2}\right)=8, ~ \mathrm{Q}_{1}=7, ~ \mathrm{Q}_{3}=15$
iii) S.I.R. $=4$
(b) i) column completed
ii) median $\left(\mathrm{Q}_{2}\right)=10, \mathrm{Q}_{1}=9, \mathrm{Q}_{3}=12$
iii) S.I.R. $=10 \cdot 5$
(c) i) column completed
ii) median $\left(\mathrm{Q}_{2}\right)=52, \mathrm{Q}_{1}=51, \mathrm{Q}_{3}=54$
iii) S.I.R. $=1.5$
(d) i) column completed
ii) median $\left(\mathrm{Q}_{2}\right)=123, \mathrm{Q}_{1}=122, \mathrm{Q}_{3}=124$
iii) S.I.R. $=1$
3. Pupils own drawings
4. All these answers are approximate: (a) median $\left(\mathrm{Q}_{2}\right)=17, \mathrm{Q}_{1}=14, \mathrm{Q}_{3}=19 \cdot 5$, S.I.R. $=2 \cdot 75$
(b) median $\left(\mathrm{Q}_{2}\right)=52, \mathrm{Q}_{1}=41, \mathrm{Q}_{3}=62$, S.I.R. $=10 \cdot 5$

## Statistics (4) - Boxplots (the five-figure summary)

1. $\mathrm{A}=2$
$B=6$
C $=8$
$\mathrm{D}=12$
$\mathrm{E}=17$
2. (a) 6 hours and 22 hours
(b) 11 hours
(c) $50 \%$
(d) range $=16$ hours , S.I.R. $=4 \cdot 5$ hours
3. 

(a) i) $\mathrm{L}=5, \mathrm{Q}_{1}=7, \mathrm{Q}_{2}=12, \mathrm{Q}_{3}=14, \mathrm{H}=21$
ii) boxplot
iii) S.I.R. $=3 \cdot 5$
(b) i) $\mathrm{L}=16, \mathrm{Q}_{1}=18, \mathrm{Q}_{2}=23, \mathrm{Q}_{3}=33, \mathrm{H}=40$
ii) boxplot
iii) S.I.R. $=7 \cdot 5$
(c) i) $\mathrm{L}=1, \mathrm{Q}_{1}=6, \mathrm{Q}_{2}=9, \mathrm{Q}_{3}=20, \mathrm{H}=40$
ii) boxplot
iii) S.I.R. $=7$
4. (a) June: $\mathrm{L}=1, \mathrm{Q}_{1}=5, \mathrm{Q}_{2}=7, \mathrm{Q}_{3}=9, \mathrm{H}=13$

July : $\mathrm{L}=2, \mathrm{Q}_{1}=6, \mathrm{Q}_{2}=9, \mathrm{Q}_{3}=11, \mathrm{H}=15$
(b) boxplot

(c) June : range $=12$, S.I.R. $=2$

July : range $=13$, S.I.R. $=3 \cdot 5$
(d) comments $\qquad$ (July's median higher also a bigger spread, etc.)

Trigonometry (1)
1.
(a) $x=35 \cdot 7$
(b) $x=46 \cdot 2^{\circ}$
(c) $x=36 \cdot 0^{\circ}$
(d) $x=58 \cdot 4$
(e) $x=75 \cdot 0^{\circ}$
(f) $x=34 \cdot 9^{\circ}$
2.
(a) $x=10 \cdot 9$
(b) $x=9 \cdot 0$
(c) $x=39 \cdot 8$
(d) $x=10 \cdot 1$
(e) $x=8 \cdot 2$
(f) $\quad x=6 \cdot 7$
3.
(a) $p=7 \cdot 8$
(b) $\quad p=14 \cdot 6$
(c) $\quad p=4 \cdot 2$
(d) $p=86 \cdot 0$
(e) $\quad p=24 \cdot 8$
(f) $\quad p=36 \cdot 4$

## Trigonometry (2) - More Practice

1. $a=7 \cdot 5$
2. $b=48 \cdot 6^{\circ}$
3. $c=5 \cdot 4$
4. $d=7 \cdot 0$
5. $e=51 \cdot 3^{\circ}$
6. $f=52 \cdot 9$
7. $g=34 \cdot 4$
8. $\quad h=73.3^{\circ}$
9. $i=23 \cdot 6$
10. $j=28 \cdot 1^{\circ}$
11. $k=28 \cdot 7$
12. $l=40 \cdot 1^{\circ}$
13. $m=2 \cdot 1$
14. $n=5 \cdot 2$
15. $o=5 \cdot 2$
16. $p=64 \cdot 6^{\circ}$
17. $q=8 \cdot 2$
$r=55 \cdot 1^{\circ}$
18. $s=6 \cdot 7 \quad t=4.7$
$u=8 \cdot 2$
$19 \quad v=1.7$
$w=1 \cdot 4$
$x=45 \cdot 6^{\circ}$

## Trigonometry (3) - Isosceles Triangles \& Frameworks

1. 

(a) 5.8 cm
(b) 25.4 cm
(c) 11.8 mm
2. $34 \cdot 8 \mathrm{~cm}$
3.
(a) $31^{\circ}-\mathrm{No}$
(b) $21 \cdot 8^{\circ}-$ Yes
4.
(a) $\mathrm{DB}=15 \cdot 0 \mathrm{~mm}$
(b) $\mathrm{BC}=18.3 \mathrm{~mm}$
5. $\quad \mathrm{AB}=2.7 \mathrm{~m} \quad \therefore \angle A C B=32.7^{\circ}\left(32.9^{\circ}\right)$ - It is a safe chute.

## Trigonometry (4) - Problems

1. $68.0^{\circ}$
2. $\quad 41.8^{\circ}$
3. $\quad 3.8 \mathrm{~m}$
4. $\quad 11.7 \mathrm{~m}$
5. $63.6^{\circ}$
6. $\quad 17.0 \mathrm{~m}$
7. $\quad 15.6 \mathrm{~m}$
8. $40.0^{\circ}$
9. $\quad 28.0 \mathrm{~m}$
10. $\quad 88.8 \mathrm{~cm}$
11. 4.4 cm

## Simultaneous Equations (1)

1. (a) $\begin{aligned} & x=2 \\ & y=5\end{aligned}$
(b) $\quad \begin{aligned} a & =3 \\ b & =-2\end{aligned}$
(c) $\quad \begin{aligned} & e=6 \\ & f=2\end{aligned}$
(d) $\quad \begin{aligned} & x=-1 \\ & y\end{aligned}$
(e) $\quad \begin{aligned} x & =2 \\ y & =-2\end{aligned}$
(f) $\quad \begin{aligned} & p=-2 \\ & q=3\end{aligned}$
(g) $\quad \begin{aligned} & g=-4 \\ & h=3\end{aligned}$
(h) $\quad \begin{aligned} & x=3 \\ & y=4\end{aligned}$
(i) $\quad \begin{aligned} u & =-2 \\ v & =-3\end{aligned}$
(j) $\quad \begin{aligned} x & =4 \\ y & =1\end{aligned}$
(k) $\quad \begin{aligned} & p=-5 \\ & q=2\end{aligned}$
(1) $\quad \begin{aligned} a & =4 \\ b & =-2\end{aligned}$
2. (a) $\begin{aligned} & x=2 \\ & y=5\end{aligned}$
(b) $\quad \begin{aligned} a & =3 \\ b & =-1\end{aligned}$
(c) $\quad \begin{aligned} & e=-2 \\ & f=5\end{aligned}$
(d) $\quad \begin{aligned} x & =-1 \\ y & =4\end{aligned}$
(e) $\quad \begin{aligned} & x=3 \\ & y=4\end{aligned}$
(f) $\quad \begin{aligned} & p=-3 \\ & q=4\end{aligned}$
(g) $\quad \begin{aligned} & g=8 \\ & h=-5\end{aligned}$
(h) $\quad \begin{aligned} x & =7 \\ y & =-2\end{aligned}$
(i) $\quad \begin{aligned} u & =2 \\ v & =-2\end{aligned}$
(j) $\quad \begin{aligned} x & =4 \\ y & =1\end{aligned}$
(k) $\quad \begin{aligned} & p=-1 \\ & q=2\end{aligned}$
(1) $\quad \begin{aligned} a & =8 \\ b & =-2\end{aligned}$
3. 

(a) $(2,4)$
(b) $(2,3)$
(c) $(3,1)$
(d) $(3,2)$
(e) $(4,3)$
(f) $(1,5)$

## Simultaneous Equations (2)

1. 36 and 20
2. 18 and 4
3. 8 and 5
4. 9 and 2
5. 

(a) $x=12, y=3$
(b) $144 \mathrm{~cm}^{2}$
6.
(a) box $=6 \mathrm{~kg}$, parcel $=2 \mathrm{~kg}$
(b) 58 kg
7. $\quad$ butter $=96 \mathrm{p}$, milk $=24 \mathrm{p}$
8. 38 hours
9. 320 cheaper tickets
10. 21 fifty pence coins

## Area 1

(a) $38.4 \mathrm{~cm}^{2}$
(b) $52 \mathrm{~mm}^{2}$
(c) $56 \mathrm{~cm}^{2}$
(d) $113.04 \mathrm{~m}^{2}$
(e) $300 \mathrm{~mm}^{2}$
(f) $234 \mathrm{~cm}^{2}$
(g) $\quad 28 \mathrm{~m}^{2}$
(h) $315 \mathrm{~cm}^{2}$
(i) 42 cm 2
(j) $16 \mathrm{~mm}^{2}$
(k) $480 \mathrm{~cm}^{2}$
(l) $140 \mathrm{~cm}^{2}$

## Area 2

1. $\quad 147 \mathrm{~cm}^{2}$
2. $\quad 55.5 \mathrm{~cm}^{2}$
3. $616 \mathrm{~mm}^{2}$
4. $40 \cdot 2 \mathrm{~m}^{2}$
5. $89 \cdot 2 \mathrm{~cm}^{2}$
6. $218 \cdot 5 \mathrm{~mm}^{2}$
7. $\quad 154 \cdot 7 \mathrm{~cm}^{2}$
8. $\quad 176 \cdot 8 \mathrm{~mm}^{2}$

## Area 3 - Problems

1. (a) $196.8 \mathrm{~cm}^{2}$
(b) $1538.7 \mathrm{~mm}^{2}$
2. 

(a) $686 \mathrm{~cm}^{2}$
(b) $31.4 \%$
3.
(a) $254 \cdot 3 \mathrm{~cm}^{2}$
(b) $21.5 \%$
4. $\quad 1.9 \mathrm{~cm}^{2}$
5.
(a) $496 \cdot 9 \mathrm{~m}^{2}$
(b) $206 \cdot 3 \mathrm{~m}^{2}$
6. 15

## Volume (1)

1. 

(a) $72 \mathrm{~cm}^{3}$
(b) $512 \mathrm{~mm}^{3}$
(c) $1280 \mathrm{~cm}^{3}$
2.
(a) $1270 \mathrm{~cm}^{3}$
(b) $6480 \mathrm{~mm}^{3}$
(c) $1575 \mathrm{~cm}^{3}$
(d) $6468 \mathrm{~mm}^{3}$

## Volume (2)

1. 

(a) $75 \cdot 36 \mathrm{~cm}^{3}$
(b) $602 \cdot 88 \mathrm{~cm}^{3}$
(c) $502.4 \mathrm{~mm}^{3}$
(d) $56 \cdot 52 \mathrm{~m}^{3}$
2. $5024 \mathrm{~cm}^{3}$
3. $4 \mathrm{~m}^{3}$
4.
(a) $904 \cdot 3 \mathrm{~cm}^{3}$
(b) $33 \cdot 5 \mathrm{~m}^{3}$
(c) $3052 \cdot 1 \mathrm{~mm}^{3}$
(d) $113 \cdot 0 \mathrm{~cm}^{3}$
5. $268 \mathrm{~cm}^{3}$
6.
(a) $56 \cdot 5 \mathrm{~cm}^{3}$
(b) $803.8 \mathrm{~mm}^{3}$
(c) $47 \cdot 1 \mathrm{~cm}^{3}$
(d) $25 \cdot 1 \mathrm{~cm}^{3}$
7. $\quad 83 \cdot 7 \mathrm{~cm}^{3}$
8. $314 \mathrm{~cm}^{3}$
9. $\quad 1017 \cdot 36 \mathrm{~cm}^{3}$
10. $37 \mathrm{~cm}^{3}$
11. $640 \mathrm{~mm}^{3}$

## Factorisation

1. 

(a) $3(x-5)$
(b) $5(y+7)$
(c) $8(a+6)$
(d) $6(3+t)$
(e) $x(x+9)$
(f) $y(3-y)$
(g) $\quad b(b-4)$
(h) $p(5+p)$
(i) $a(b+c)$
(j) $\quad x(x-y)$
(k) $\quad p(q-r)$
(1) $a(a+x)$
(m) $4(2 a+5)$
(n) $7(3 y-4)$
(o) $2(12 x+11)$
(p) $9(4 c-7)$
2.
(a) $2 a(a+3)$
(b) $5 x(x-8)$
(c) $10 y(3-y)$
(d) $3 t(t+6)$
(e) $3 x(2 x-9)$
(f) $2 y(7-5 y)$
(g) $\quad 4 b(3 b-8)$
(h) $5 x(5 x+4)$
3.
(a) $(a-3)(a+3)$
(b) $(x-2)(x+2)$
(c) $(p-9)(p+9)$
(d) $(c-5)(c+5)$
(e) $(b-1)(b+1)$
(f) $(y-4)(y+4)$
(g) $\quad(m-5)(m+5)$
(h) $(a-3)(a+3)$
(i) $(6-d)(6+d)$
(j) $(2-q)(2+q)$
(k) $\quad(7-w)(7+w)$
(1) $(x-8)(x+8)$
(m) $(9-2 g)(9+2 g)$
(n) $(6 w-y)(6 w+y)$
(o) $(2 a-1)(2 a+1)$
(p) $(g-9 h)(g+9 h)$
(q) $(7 x-y)(7 x+y)$
(r) $(3 c-4 d)(3 c+4 d)$
(s) $(2 p-3 q)(2 p+3 q)(\mathrm{t})$
$(b-10 c)(b+10 c)$
4.
(a) $(b+3)(b+4)$
(b) $(x+9)(x+5)$
(c) $(s+3)(s+8)$
(d) $(y+7)(y+4)$
(e) $(b+3)(b+3)$
(f) $(c+6)(c+7)$
(g) $(a+8)(a+4)$
(h) $(y+4)(y+2)$
(i) $(x-1)(x-5)$
(j) $(c-4)(c-2)$
(k) $(y-3)(y-7)$
(1) $(b-6)(b-8)$
(m) $(x-5)(x-2)$
(n) $(s-8)(s-5)$
(o) $(y-2)(y-9)$
(p) $(a-4)(a-4)$
5.
(a) $(x-1)(x+5)$
(b) $(a+3)(a-7)$
(c) $(t-5)(t+4)$
(d) $(y+8)(y-4)$
(e) $(c+2)(c-7)$
(f) $(x-6)(x+1)$
(g) $(b-2)(b+9)$
(h) $(p-10)(p+2)$
(i) $(y-8)(y+7)$
(j) $(z+4)(z-6)$
(k) $(x+4)(x-7)$
(1) $(a+2)(a-15)$
(m) $(c+5)(c-4)$
(n) $(p-7)(p+1)$
(o) $(b+10)(b-5)$
(p) $(x-3)(x+6)$

## Formula (1)

1. 

(a) $\quad T=56$
(b) $\quad P=8$
(c) $\quad R=20$
(d) $z=12$
(e) $k=20$
(f) $\quad R=17 \cdot 4$
(g) $\quad P=6$
(h) $y=3 \cdot 3$
2.
(a) $\quad V=2967 \cdot 3$
(b) $\quad R=0.02$
(c) $\quad v=45$
(d) $E=1400$
(e) $\quad A=94 \cdot 2$
(f) $\quad v=72$
(g) $s=810$
(h) $\quad A=7536$
(i) $\quad P=375$
(j) $A=1055 \cdot 04$
(k) $\quad e=256$
(1) $h=270$
(m) $\quad F=2$
(n) $s=16$
(o) $\quad a=28 \cdot 8$
1.
a. $\quad x=y-3$
b. $x=y+5$
c. $x=y-a$
d. $x=y+b$
e. $\quad x=\frac{y}{3}$
f. $x=\frac{y}{10}$
g. $\quad x=\frac{y}{k}$
h. $x=\frac{y}{a}$
i. $x=y-3 p$
j. $\quad x=y+5 t$
k. $x=\frac{y-1}{2}$
I. $x=\frac{y+7}{3}$
m. $x=\frac{y-4 a}{7}$
n. $x=\frac{y-3 b}{4}$
o. $x=\frac{y-8}{10}$
2.
a. $x=\frac{y-b}{a}$
b. $x=\frac{y-c}{m}$
c. $\quad x=\frac{t+r}{s}$
d. $x=\frac{p-2 r}{q}$
e. $x=\frac{m+3 n}{f}$
f. $x=\frac{a-b}{c}$
g. $x=\frac{h-k}{m}$
h. $x=\frac{d-3 b}{c}$
i. $x=\frac{k c-g}{h}$
3.
a. $\quad l=\frac{P}{4}$
b. $\quad I=\frac{V}{R}$
c. $\quad T=\frac{S}{D}$
d. $\quad b=\frac{A}{l}$
f. $U=\frac{G}{T}$
g. $\quad t=\frac{v-u}{a}$
h. $l=\frac{P-2 b}{2}$
i. $y=\frac{H-5 m}{x}$
e. $\quad d=\frac{C}{\pi}$
4.
a. $\quad x=\frac{3}{y}$
b. $\quad x=\frac{c}{d}$
c. $\quad x=\frac{y}{m}$
d. $x=\frac{a+2}{s}$
e. $x=\frac{z-1}{w}$
f. $x=\frac{b+c}{a}$
g. $x=9 a-8$
h. $x=2 k+5$
i. $x=3-4 p$
j. $\quad x=\frac{2}{y-1}$
k. $x=\frac{6}{z+7}$

1. $x=\frac{m}{h-k}$
2. a. $s=\frac{v^{2}-u^{2}}{2 a}$
b. $u=\sqrt{v^{2}-2 a s}$
c. $\quad h=\frac{V}{\pi r^{2}}$
d. $r=\sqrt{\frac{V}{\pi h}}$
e. $\quad A=\pi r^{2}$
f. $a=\frac{(L-3)^{2}}{6}$
g. $\quad p=4 k^{2}-4$
h. $y=\frac{x^{2} t}{4 z}$
i. $\quad b=\frac{x}{(2 a r)^{2}}$
j. $\quad A=\sqrt{\frac{s t}{(x-3 y}}$
k. $x=\frac{R+3 A^{2} y}{A^{2}}$
l. $n=\sqrt{1-(n a)^{2}}$
m. $n=\frac{t}{t-d}$
n. $\quad R=\frac{r_{1} r_{2}}{r_{1}+r_{2}}$
